Novel Bio-Adhesive Gels for Hemostatics and Adhesion Barrier

Dr. Yoshiyuki Koyama

- Otsuma Women's University; Professor
- Japan Anti-Tuberculosis Association, Shin-Yamanote Hospital Clinical Medical-Engineering Laboratory; Director
- Alpha-Nano-Medica Co., Ltd.; Vice President
- Golden Orchid Brothers, Inc.; Adviser
- Obara Hospital; Adviser

Bioadhesive Gels Containing Poly(acrylic Acid) for Hemostatics and Adhesion Barrier Devices

Flexible Film

Sponge

Highly Safe!!

- All the materials used are approved as pharmaceutical additives
- Spontaneously dissolved at pH 7.4

Poly(acrylic acid) (PAA) gel has been known to form a bioadhesive gel

$$\begin{array}{c} - \left\{ \text{CH}_2 - \text{CH} \right\} \\ \text{COOH} \end{array}$$

Poly(acrylic acid) (PAA)

Cross-linked PAA Gel

Cross-linked PAA gel could be used as a hemostatic device.

However, Large Cross-linked PAA Gel is Difficult to be Prepared and Molded.

Hydrogen Bonding Complex Gel

Could be Prepared by Mixing the Solutions

But, , , mixing of the solutions results in precipitating

We Have Succeeded in Preparation of the PAA/PVP Complex Film Which is Swellable in Water

Swelled in Water to a Soft Gel

Adhesion to Tissue

Improvement of the Film (1)

PAA + PVP

Brittle Film

Addition of Polymer-A

Flexible Film

Improvement of the Film (2)

Polymer-B Enhanced the Pressure Resistance

Improvement of the Film (3) Multilayer Gauze-including Film

Improvement of the Film (4) Softness and Fast Attachment

PAA + PVP + Polymer-A

Flexible Film

Addition of Polymer-C

Highly Flexible Film Fast Swelling and Attaching

Hemostatic Effect of the Film (1) (on the Liver)

Liver was cut, and bleeding was stopped by the film

Hemostatic Effect of the Film (2) (on the Vein)

vein of lower extremity was cut, and treated with film

cut, and film was pasted
15 min. 60 min.

Hemostatic Effect of the Film (3)

(on the Mouse treated with Heparin)

Mouse (ddY, σ , 40 g) was injected with Fragmin (30 IU), and the \ lower extremity was cut, and treated with;

Right Leg: Film

Left Leg: Gauze

25 min

Clinical Study

Male, 81 old, taking Warfarin

Bleeding was Soon Stopped

Female, 51 old, taking Warfarin

After Injection of CT-Contrast Media

Another Formulation Swellable PAA/PVP Sponge

Traditional PAA/PVP Sponge

Swellable PAA/PVP Sponge

PAA Solution **PVP Solution Diluted Conditions Not Swellable** Conventional Freeze-Drying **Swellable New Method**

Hemostatic Effect of the Sponge

By Conventional Method

Could not Stopped

By New Method

Stopped

Degradation of the Sponge

PAA was fuluorescence labelled by Texas Red)

Clinical Study

Female, 59 old

Bleeding was Effectively Stopped

Male, 87 old, taking Plavix

Female, 50 old, taking Warfarin

Female, 52 old, taking Warfarin (High Dose)

When she had her tooth extracted last year, bleeding lasted over 7 days.

Female, 81 old, taking Bayaspirin

Doctor had only one piece of the sponge.

Another Application

Adhesion Barrier

Adhesion Model Mouse: Cecum was heated

They are novel devices with

No Risk of Infection!

No ingredients are from animals.

No Risk of Toxicity!

All the ingredients have already been approved as pharmaceutical additives.

No Risk of Inflammation!

Gel formed on the tissue would be slowly dissolved at pH 7.4, and no residue remains.

No Fear for Handling!

They would stick to the tissue by themselves.

No Fear for Material Supply and Cost!

All the ingredients are on market in a large amount at very low Price.

No Fear for Producibility!

They could be easily, and reproducibly prepared.

This technology would produce

A hemostatic bandage for consumer

A hemostatic device for medical use For Injection, Blood Sampling

For Dental Surgery Field

A hemostatic film for surgical use (internal use)

An adhesion barrier for surgery

Moreover, This technology could be easily arranged to

- ☆ New composition to attain the appropriate property for individual requirements soft, tough, thin, thick
- ☆ Compound with Hemostatic agents higher hemostatic efficacy Antibacterial agents to avoid infection

These Devices have High Efficacy, High Safety, High Potential, and No Risk.

Thank you.